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The presented research describes the electrochemical synthesis of Pd—Se thin films. The deposition process was
accomplished in an aqueous chloride solution at a rotating disc electrode in the potential range from —0.4 to
—0.6 V. The resulting coatings varied in both elemental and phase composition as well as surface morphology,
depending on the potential. The difference is due to a change in the electrode reaction mechanism. A post-
deposition heat treatment revealed the presence of Pd4Se in the coating deposited at —0.4 V and Pd;7Se;s and

1. Introduction

The chalcogenides associated with noble metals have recently
attracted increasing attention [1]. It turns out that, despite their
chemical inertness, many compounds of noble metals with sulfur, sele-
nium, or tellurium exist in nature [2]. The interest in these compounds
arises primarily from their applicability as potential catalysts. However,
current research attention is not due only to the excellent catalytic
properties of the noble metals — the inspiration to investigate the
possible synthesis of these materials was the spectacular catalytic
properties of other chalcogenides, namely molybdenum and tungsten
sulfides [3].

Considering the group of precious metal chalcogenides, compounds
based on palladium and selenium are of particular interest. Palladium
and selenium can form intermetallic compounds with different stoi-
chiometric ratios: PdSe, PdSey, PdoSes, aPd4Se, fPd4Se, Pd;Sey Pd;Ses,
Pd;;Se;s, and PdssSe;; [2,4,5]. Thanks to their electrical properties,
which include a wide tunable bandgap, unique pentagonal atomic
structure, and excellent stability in air, these compounds have found
application in the electronics industry as ultra-fast photonic devices,
ultra-sensitive photodetectors, ultra-bound photodetectors and dye-
sensitized solar cells [6-10]. Palladium and selenium compounds are
very resistant to oxidation in acid solutions, although they are less stable
in an alkaline environment. Therefore, the Pd4Se, Pd;Sey4, and Pd;7Se;s
phases show resistance to methanol during the ORR reaction. For this
reason, Pd-Se compounds can be used as electrocatalysts in direct
methanol fuel cells and the hydrogen evolution reaction [11-13].

Palladium-selenium compounds can be synthesized in a number of
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ways, including chemical vapor deposition, selenization of palladium,
molecular beam epitaxy, hydrothermal methods, thermolysis, sol-
vothermal methods and exfoliation [6-9,11]. As far as we know, how-
ever, there have been no reports of the electrodeposition of Pd-Se thin
films. Nevertheless, the electrochemical process has many advantages, e.
g., control of the chemical and phase composition of coatings, as well as
their thickness and morphology. Another characteristic of this method is
its simplicity: the process can be carried out at a low temperature; it is
easy to prepare the electrolyte; the process time is relatively short; and
the costs of reagents and equipment are low. Moreover, electrodeposi-
tion of palladium and selenium has been widely described in the liter-
ature. Palladium deposition is possible from aqueous electrolytes over
the entire pH range, including alkaline [14,15] and acidic [16,17] so-
lutions. However, the electrochemical deposition mechanism is more
complicated in the case of selenium due to its large number of oxidation
states (—2, +4, +6) [18-23]. Thus the process of selenium electrode-
position requires more attention, in particular due to its high reactivity
and the possibility of interaction with the substrate [20]. Nevertheless,
the precise control of the electrolysis parameters enables the electro-
synthesis of numerous metal chalcogenides [23].

The present article describes for the first time a simple electro-
chemical method of depositing palladium-selenium coatings from
chloride solutions. By controlling the deposition potential, it is possible
to influence the elemental composition, phase structure, and
morphology of the coatings, due to changes in the electrode reaction
mechanism.
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2. Experimental details

The Pd-Se coatings were synthesized from an electrolyte containing
0.008 M PdCl; (99% Aldrich), 0.008 M SeO3 (99.999% Aldrich) and 0.2
M NaCl (CZDA POCH). The pH was adjusted to 2.0 by adding hydro-
chloric acid. Copper sheets covered with gold (2.84 cm?) were used as
the substrate. The copper was chemically polished to remove impurities
using a mixture of acids: HNO3, H3PO4 and CH3COOH in a 1:1:1 vol ratio
at a temperature of 70 °C for 40 s. The copper sheets were rinsed with
deionized water and dried. Afterwards, a layer of gold at least 200 nm
thick was sputtered onto the copper.

The deposition process was carried out in a three-electrode system,
where Cu/Au was the working electrode, a Pt sheet was the counter
electrode and the Ag/AgCl electrode served as the reference electrode.
All the potentials in this article are given with respect to this electrode.
The working electrode was embedded in a Teflon® holder and mounted
as a rotating disc electrode on a Pine Research MSR Rotator. An
AUTOLAB 302 N potentiostat controlled the electrolysis parameters.
Electrodeposition was performed in the potential range from —0.4 to
—0.6 V for 300 s at room temperature. A rotating disc with a rotational
speed of 800 rpm was used. The deposited coatings were then annealed
in a quartz tube at a temperature of 200 °C for 2 h under an argon at-
mosphere and then cooled to room temperature, also in the presence of
the inert gas.

Before and after annealing, the surface morphology of the coatings
was examined using a JEOL JCM-6000 NEOSCOPE scanning electron
microscope. The elemental composition was determined by EDS analysis
in at least three places: at the edges and in the center of the samples.
Analyses were done at accelerating voltages of 10 kV from an area 0.4
mm? in size. The obtained results were averaged and their standard
deviation was calculated. Phase analysis was carried out using the XRD
method (Rigaku Miniflex II).

3. Results and discussion

The electrochemical deposition of both palladium and selenium from
aqueous solutions has been described in the literature [14-25]. In the
case of palladium, the deposition process in chloride solutions follows
the reaction:

[PACL)* + 2~ — Pd® + 4C1~ @

The process of selenium reduction from acidic solutions is more
complex and, depending on the electrode potential, the following re-
actions may take place:

H,Se05 + 4HT + 4~ — Se” + 3H,0 2
H,Se0; + 6H' + 6e~ — H,Se + 3H,0 3)
Se® + 2H' + 2¢” — H,Se €))

The reduction of selenous acid by the four-electron reaction (2) is
possible at more positive potentials compared to the six-electron reac-
tion (3) [26]. However, the potential at which the selenous acid
reduction mechanism changes depends on many factors. First of all,
naturally, it depends on the pH of the solution and the concentration of
selenous acid [20]. Moreover, the selenous acid reduction mechanism
also depends on any co-deposited metal and the electrode material
[18,23,27]. Moreover, previously deposited selenium (Seo) may also be
reduced to hydrogen selenide [20]. The selenous acid reduction reaction
mechanism strongly influences the process of co-deposition of metals
with selenium [28-31]. It also determines the composition, structure and
surface morphology of the coatings. The palladium and selenium
deposition process was carried out in the potential range between —0.4
and —0.6 V at pH 2. The potential range and pH were selected to observe
the process of palladium and selenium co-deposition, where selenous
acid can be reduced predominantly according to reaction (2) or (3). The
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parameters were selected on the basis of our previous experience of the
selenous acid reduction mechanism and co-deposition of selenium with
metals from aqueous solutions at pH 2 [28-32]. Initial voltammetric
tests indicate a possible switch in the selenous acid reduction mecha-
nism from a four- to a six-electron reaction in the Pd-Se system at about
—0.5 V (Fig. S1). However, a thorough interpretation of the results of
voltammetric tests confirming the mechanism of palladium and sele-
nium co-deposition goes far beyond the scope of this communication. A
detailed electroanalytical analysis is currently being carried out in our
laboratory.

3.1. EDS analysis

Table 1 shows the elemental composition of the coatings after
deposition. All samples contain significantly more palladium than se-
lenium. There is a characteristic tendency for a reduction in the palla-
dium content with a simultaneous increase in the selenium
concentration with more negative potential. There is a twofold increase
in the selenium content of the samples deposited at —0.5 and —0.6 V
compared with the coating obtained at —0.4 V.

3.2. XRD analysis

The XRD patterns for the as-deposited samples are shown in Fig. 1. In
general, peaks related to the substrate (Cu/Au) are visible. Additionally,
a single peak for palladium is observed at 39.75° for the sample
deposited at —0.4 V. This element is present in the deposit as a separate
phase. By contrast only peaks associated with the substrate are visible
for samples deposited at —0.5 V and —0.6 V. It is difficult to determine
whether the deposited palladium and selenium exist as separate phases
or whether intermetallic compounds have been formed. The lack of
peaks implies that the coatings have an amorphous structure.

The samples were subjected to a heat treatment to improve the
crystallinity of the deposits and subsequently reanalyzed using XRD.
After the heat treatment at 200 °C, the composition of the coatings did
not change significantly (Table 1), but a substantial difference was
revealed between the samples deposited at —0.4 V and the samples
obtained at —0.5 and —0.6 V. New peaks appeared compared to the as-
deposited coatings. The common feature is still the dominance of the
peaks attributed to the substrate. The palladium-related peak dis-
appeared from the diffractogram obtained from the sample deposited at
—0.4 V, and a series of peaks related to the Pd4Se phase appeared in its
place. Overlapping peaks associated with the Pd;7Se;5 and PdgSe phases
can be distinguished for coatings deposited at more negative potentials.

3.3. SEM analysis

The morphology of the coatings depends on the chemical composi-
tion and the phase structure (Fig. 2). There is a considerable difference
between the layers deposited at —0.4 V and those deposited at more
negative potentials. The former are grey with a metallic shine, while the
latter are black and matt. Electron microscopy studies reveal the reason
for such a significant difference in the appearance of the coatings. The

Table 1

Elemental composition of coatings electrodeposited at different potentials from
bath: 0.008 M PdCl,, 0.008 M H,SeO3, 0.2 M NacCl, pH = 2 on Cu/Au electrode:
(a), (c), (e) before annealing; (b), (d), (f) after annealing at 200 °C for 2 h in an
argon atmosphere.

E vs Ag/AgCl (V) Pd,,. (% at.) Se,y (% at.)

@) 0.4 83.4 +0.6 16.6 +0.6
®) 78.4 +2.4 21.6 +2.4
(©) -0.5 67.6 +1.5 32.5 +1.5
() 66.6 +3.7 33.4 +3.7
(e) —0.6 65.0 +0.9 35.0 +0.9
® 63.9 +3.0 36.1 +3.0
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Fig. 1. XRD patterns of coatings electrodeposited at different potentials from a bath containing 0.008 M PdCl,, 0.008 M H,SeO3, 0.2 M NaCl, pH = 2 on a Cu/Au
electrode: before annealing (black lines) and after annealing at 200 °C for 2 h in an argon atmosphere (red lines). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

sample deposited at —0.4 V is compact and composed of small globules
very tightly attached, which is typical of many metallic coatings. In
contrast, the deposits obtained at more negative potentials are porous
and composed of bunches of needles, which explains the lack of shine.

The characteristics of the coatings described above are related to the
reaction mechanism. The co-deposition of palladium and selenium
proceeds according to reactions (1) and (2). The slow kinetics of sele-
nous acid reduction by the four-electron process is responsible for the
high palladium content of the deposit [25]. Phase analysis confirms only
the presence of metallic palladium. The lack of selenium peaks is related
to the amorphous structure, which is characteristic of selenium coatings
obtained by electrochemical methods [20,28-33]. Only heat treatment
forces the reaction between palladium and selenium, and consequently
the synthesis of PdsSe. The elemental composition is very close to the
stoichiometry of this compound. The disappearance of the peak associ-
ated with pure palladium confirms that the synthesis reaction has taken
place. It should also be noted that the heat treatment did not signifi-
cantly affect the content of palladium and selenium.

The increase in selenium content of coatings deposited at —0.5 and
—0.6 V is related to a change in the selenous acid reduction mechanism.
When the potential is more negative than —0.4 V, the reduction of
selenous acid proceeds according to the 6-electron mechanism (3). The
final product of reaction (3) is hydrogen selenide. When palladium is
deposited simultaneously, the formation of hydrogen selenide is hin-
dered due to rapid coverage by Pd before the Se atoms could be reduced
to HaySe. It is difficult to resolve whether the proposed mechanism im-
plies the direct synthesis of intermetallic compounds or whether palla-
dium and selenium exist in the coating as separate phases at the present
stage of research. Confirmation of the above theory undoubtedly re-
quires further investigation, which will confirm the mechanism of
electrode reactions during the co-deposition of selenium and palladium.

Structural examination of the coatings after deposition did not reveal
any crystalline phase. Unlike the layer deposited at —0.4 V, no peak was
recorded that would indicate the presence of crystalline palladium. The

lack of this peak is related to a decrease in the palladium content of the
deposit. The heat treatment revealed a mixture of palladium-selenium
compounds, namely Pd;7Se;s and PdgSe. The phase analysis of the
tested coatings is complicated due to the overlapping of peaks from both
intermetallic compounds. All peaks fit perfectly into the Pd;7Se;s phase
(except peaks related to the substrate). However, the elemental analysis
shows an excess of palladium. The other PdgSe phase would explain the
excess palladium in the coatings.

The conducted research indicates a substantial difference between
the coatings deposited at —0.4 V and those deposited at more negative
potentials. The increase in selenium content, the lack of crystalline
palladium and the change in the morphology of the coatings suggest a
change of mechanism related to selenous acid reduction. Clarification of
the mechanism of the electrode reactions undoubtedly requires further
research.

4. Conclusions

This report presents a straightforward method of synthesizing
palladium selenides by electrodeposition. The results show that it is
possible to control the co-deposition of palladium and selenium from
aqueous solutions. The composition and the morphology of the coatings
strongly depend on the applied potential. Studies of the separate re-
actions show that the co-deposition of selenium and palladium takes
place at a potential of —0.4 V and does not lead directly to the synthesis
of palladium chalcogenides. However, heat treatment at 200 °C is suf-
ficient to obtain an intermetallic compound corresponding to the stoi-
chiometry of the deposited coating i.e., Pd4Se. Furthermore, changing
the potential in a more negative direction changes the mechanism of
palladium and selenium co-deposition. These layers have a higher
content of selenium than those deposited at —0.4 V. The as-deposited
coatings have an amorphous structure, while the heat treatment pro-
duces a mixture of Pd;7Se;5 and PdgSe phases.
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Fig. 2. SEM micrographs of coatings electrodeposited at different potentials from a bath containing 0.008 M PdCl,, 0.008 M H,SeO3, 0.2 M NaCl, pH = 2, on a Cu/Au
electrode: (a), (c), (e) before annealing, (b), (d), (f) after annealing at 200 °C for 2 h in an argon atmosphere.
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